Impact of WIC and SNAP Enrollment on Gestational Choline

Methodology

Parvaneh K. Nouri1, MD, MPH, M. Camille Hoffman2, MD, Sharon K. Hunter1, PhD

1Department of Psychiatry
2Department of Obstetrics and Gynecology

Background

- The gestational environment and compromise of maternal wellbeing can impact fetal development
- Therapeutic intervention during gestation has not yet been optimized as a risk reduction practice.
- Choline is a micronutrient naturally found in a variety of foods and may be synthesized and stored by the human liver.
- Choline is actively transported across the placenta through maternal serum and utilized in critical periods of fetal neurodevelopment.
- Recommended Adequate Intake (AI) for pregnancy and breastfeeding is 550 mg/day, respectively
 - Corresponds with maternal serum levels ≥ 7.5 μM
- It is estimated less than 10% of pregnant individuals achieve daily AI of choline.
- Choline is generally not adequately supplemented by current prenatal vitamin formulations.
- Vegan and Vegetarian individuals may be at increased risk for inadequate intake.
- Individuals experiencing food insecurity may also be at increased risk.
- Recent data suggest utilization of Special Supplementation Nutrition Program for Women, Infants, and Children (WIC) may correlate with suboptimal micronutrient intake, including that of choline.
- Further research on WIC and/or Supplemental Nutrition Assistance Program (SNAP) utilization and choline intake during pregnancy and lactation is warranted.

Objectives

- Describe the relationship between maternal choline levels measured during gestation with WIC and/or SNAP status during the same time period.
- Determine whether WIC and/or SNAP status can help identify additional nutritional needs during gestational and lactation periods.
- Advocate for nutritional support based upon needs identified (i.e., specific supplementation access or expansion of existing nutritional supplementation programs).

Choline may alter the activation of α7-nicotinic cholinergic receptor (CHRNA7 gene), which promotes maturation of excitatory and inhibitory neurocircuits – can be impaired/incomplete in schizophrenia. CHRNA7 gene has also been associated with other psychiatric diagnoses including ASD and ADHD.

Study Design

- Retrospective Cohort Study
- Data groups will include:
 - WIC, SNAP, WIC + SNAP, non-utilization

Participants

- Pregnant individuals were identified through Denver Health prenatal clinic.
- Pregnancies confirmed by ultrasound prior to 16 wks gestation.

Exclusion Criteria

- Fetal anomaly, severe intrauterine growth restriction, corticosteroid use.

Choline Levels

- Measured via maternal blood sample obtained at 16 weeks gestation.
- Adequate or below adequate choline intake is correlated with maternal serum levels of < 7.5 μM and ≥7.5 μM, respectively.

WIC and/or SNAP status during pregnancy

- Identified via retrospective chart review

Statistical Analyses

- Adequacy in maternal serum choline levels will be determined in all data groups: WIC, SNAP, WIC-SNAP, or non-utilization.
- Existing differences in groups will be determined through Fischer Exact Test, or t-test.

Selected References